Particle swarm optimization with cocktail decoding method for hybrid flow shop scheduling problems with multiprocessor tasks
نویسنده
چکیده
This paper addresses the problem of multiprocessor task-scheduling in a hybrid flow shop (HFS) problem to minimize the makespan. Due to the complex nature of an HFS problem, it is decomposed into the following two sequential decision problems: determining the job permutation in stage 1, followed by a decoding method to assign jobs into each machine in subsequent stages when designing a heuristic algorithm. The decoding method plays a pivotal role for improving the solution quality of any algorithm for the HFS problem. However, the majority of existing algorithms ignores the problem and is only concerned with the first decision problem. This study emphasizes the importance of the decoding method via a small test, and searches for a number of solid decoding methods that can be incorporated into the cocktail decoding method. Then, this study develops a particle swarm optimization (PSO) algorithm that can be combined with the cocktail decoding method. In the PSO, a variety of job sequences are generated using the PSO procedure in stage 1, and the cocktail decoding method is used to assign the jobs to machines in sequential stages. Moreover, a modified lower bound is introduced. Computational results show that the proposed lower bound is competitive, and with the help of the cocktail decoding method, the proposed PSO, and even the adoption of a standard PSO framework, significantly outperforms the majority of existing algorithms in terms of quality of solutions, especially
منابع مشابه
Scheduling of a flexible flow shop with multiprocessor task by a hybrid approach based on genetic and imperialist competitive algorithms
This paper presents a new mathematical model for a hybrid flow shop scheduling problem with multiprocessor tasks in which sequence dependent set up times and preemption are considered. The objective is to minimize the weighted sum of makespan and maximum tardiness. Three meta-heuristic methods based on genetic algorithm (GA), imperialist competitive algorithm (ICA) and a hybrid approach of GA a...
متن کاملThree Hybrid Metaheuristic Algorithms for Stochastic Flexible Flow Shop Scheduling Problem with Preventive Maintenance and Budget Constraint
Stochastic flexible flow shop scheduling problem (SFFSSP) is one the main focus of researchers due to the complexity arises from inherent uncertainties and also the difficulty of solving such NP-hard problems. Conventionally, in such problems each machine’s job process time may encounter uncertainty due to their relevant random behaviour. In order to examine such problems more realistically, fi...
متن کاملA Flow shop Production Planning Problem with basic period policy and Sequence Dependent set up times
Many authors have examined lot sizing, scheduling and sequence of multi-product flow shops, but most of them have assumed that set up times are independent of sequence. Whereas dependence of set up times to sequence is more common in practice. Hence, in this paper, we examine the discussed problem with hypothesis of dependence of set up times to sequence and cyclic schedule policy in basic peri...
متن کاملA comparison of algorithms for minimizing the sum of earliness and tardiness in hybrid flow-shop scheduling problem with unrelated parallel machines and sequence-dependent setup times
In this paper, the flow-shop scheduling problem with unrelated parallel machines at each stage as well as sequence-dependent setup times under minimization of the sum of earliness and tardiness are studied. The processing times, setup times and due-dates are known in advance. To solve the problem, we introduce a hybrid memetic algorithm as well as a particle swarm optimization algorithm combine...
متن کاملParticle Swarm Optimization and Other Metaheuristic Methods in Hybrid Flow Shop Scheduling Problem
Multiprocessor task scheduling is a generalized form of classical machine scheduling where a task is processed by more than one processor. It is a challenging problem encountered in wide range of applications and it is vastly studied in the scheduling literature (see for instance (Chan & Lee, 1999 and Drozdowski, 1996) for a comprehensive introduction on this topic). However, Drozdowski (1996) ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015